ECE 514 HW6 Arpad Voros

1. Suppose we observe the random variable Y to estimate X. We know the following

- YE£X+N

= X ~ N(pa, 07)

— N ~ N(0,02)

— X and N are independent
To calculate the MMSE estimator & in terms of random variable Y when Y = y, given
by g(y), we know from a derivation in our ECE 514 class that
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b =gly) = EIX|Y =] = / £y (aly)dz (1)

r=—00
where Bayes’ theorem for probability density functions states

Fxpy(@ly) = W

The probability density of X is Gaussian, as given in the beginning of the problem. The
probability density of Y is the sum of the two Gaussian’s X and N. A helpful linear
property of independent Gaussian’s tells us that Y ~ N(u, + 0,02 + o2).

Finally, the probability density of (Y|X = z) is simply Y = = + N, meaning that YV
follows the distribution of N shifted by z, therefore (Y|X = ) ~ N(z,02)

All together,
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Before calculating &, we can try to simplify the quantity into another Gaussian, meaning
equation (4) may be reproduced in the following form
1 —(z —m)?

ex
2V P 2v
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where m is the mean and v is the variance of the Gaussian distribution. Knowing this,
we can focus separately on the exponential terms and the scalar multiples to reproduce it
in the equation (5) format. The scalar component can be simplified down the following
way
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So, for now, the quantity given above matches our format in equation (5), where

2 2
0.0n

Uy = —2 0
o2+o2

(9)
however, we first must ensure we get the same variance in the exponential component
before we make any conclusions. Exponents are added and subtracted when multiplying
and dividing quantities respectively, so

_ _ 2 _ _ 2 _ _ 2
exp (S5 + S - i)
fX|Y(33|y) = 252 (10)
R e

And, again, since we want the quantity above in the form given in equation (5), then we
can safely play with the exponent to get it into the following form
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Knowing this, we can separate the right-hand side into terms of z. Time for some algebra
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Now only focusing on right side of numerator
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So the numerator is
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which is in the form of
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meaning, getting our exponential denominator back from equation (16) and our scalar
component from equation (8)

(z yai+uwi)2

1 B T o02+02

fxy (zly) = T OXP 5 ag;% - (23)
L oZtoZ

which is in the form of a Gaussian outlined in equation (5), where

_ Yoz + Haoyy

24

e (24)
and 5 o
O—CEO-TL

ey (25)

Since our expected value is in the form of a Gaussian distribution, we know the expected
value, so we don’t have to evaluate the integral, showing

_ Yoz + Haoy

t=FX|Y =y| =
# = BIX|Y =y =m = 2

(26)

Now in order to estimate the random variable X, #, using random variable Y, we can use

_ y02+ o

27
o) = 0 (27)
2. Suppose Z =X2+Y?and W =X
(a) Find the joint density of Z and W in terms of fxy(z,y)
The functions representing random variables Z and W are
g(w,y) =2 +y? (28)
and
h(z,y) == (29)
respectively.
Assuming that X and Y are real random variables, we can safely say that
fzw(z,w) =0, z<0 (30)
And for z > 0, we can solve for z’s and y’s in terms of z’s and w’s
r=w — o =w, Yy =+Vz—w? (31)

z=w?+1y? — a=w, yp=-—Vz—w?
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The Jacobian, defined as

J(z,y)= |5 oh (32)
ox dy

helps us in finding the PDF of the joint distribution. For values of x1 and y;,
21[,’1 2y1 )
=|-2y|=2vVz—w (33)

|J(9«"1;Z/1)‘ = 1 0

and similarly for x5 and ys,

| (@2, y2)| = | — 22| =2V 2 — w? (34)
Finally, our joint density can be represented in the following form

_Ixy(@n,y) | fxy(m2,2)
Jow(zw) = T5a 0T e w) (35)

fzw (z,w) = ﬁ [ny(w, Vz—w?)+ fxy(w,—Vz —w2)} , 2>0 (36)

(b) Show that fy (w) = fx(x) by evaluating

fw(w) = /:o fzw(z,w)dz

=—00

We know that

W =X (37)
So that -
fwtw)= [ fax(sads (39)
And thus
i) = fx(@) (39)



